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Monte Carlo test of a hyperscaling relation for the 
two-dimensional self-avoiding walk 

Sergio Caracciolot and Alan D SokalSO 
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f Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New 
York, NY 10012, USA 

Received 15 September 1986 

Abstract. We simulated self-avoiding walks on the square lattice with fixed endpoints by 
means of a dynamic Monte Carlo algorithm. From these data we obtain an evaluation of 
the effective coordination number and the critical exponents a and U. We can therefore 
test the hyperscaling relation 2 - a = dv with a careful estimate of systematic and statistical 
errors. 

Among the scaling relations for critical exponents, the most subtle ones are the so-called 
hyperscaling relations, in which the dimensionality d of the system appears explicitly. 
While the ordinary scaling laws are expected to hold in all models, the validity of 
hyperscaling in a given model is a profound dynamical question: in the renormalisation 
group framework it depends on the existence or not of dangerous irrelevant variables 
(Fisher 1973,1983, h o p s  er a1 1977). Various forms of hyperscaling have been proven 
rigorously to hold for two-dimensional Ising models (Aizenman 1982) and to fail for 
Ising models in dimension d > 4 (Aizenman 1982, Frohlich 1982, Araglo de Carvalho 
er a1 1983, Aizenman and Graham 1983, Hattori 1983, Aizenman and Fernindez 1986, 
Frohlich and Sokal 1986, Fernindez et a1 1986); the validity of hyperscaling for the 
three-dimensional Ising model is a long-standing controversy (Baker 1977, LCvy er a1 
1982, Fisher and Chen 1985, Guttmann 1986a). 

In this paper we concentrate on the hyperscaling relation for the specific heat, 
which is written variously as 

d ~ = 2 - ~  (10) 

or as 

du = 2 - a,ing. (1b) 

Here U, a and asing are the critical exponents for the correlation length, the specific 
heat and the singular part of the specific heat, respectively. We emphasise, along with 
Fisher (1967), the distinction between a and aring: for example, for Ising models and 
self-avoiding walks in dimension d > 4 it is expected that U = t ,  a = 0, aSing = 2 -id < 0, 
so that ( l a )  fails but (1 b) holds. It is not entirely clear whether the heuristic arguments 
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for hyperscaling (Kadanoff 1966, Fisher 1967, Hall 1975) are intended to yield ( l a )  
or (1 b). The only available rigorous results are the lower bound 

a b max(2 - dv, 0) (2) 
(Josephson 1967a, b, Stell 1972, Sokal 1981, Hara et al 1985 footnote 25) and the upper 
bound 

a d (2 - d/2)y d s 4  

a CO d 3 4  
(3) 

(Sokal 1979, 1982) for Ising and related models. Since it is known rigorously that 
v b f ,  at least for models satisfying reflection positivity (Glimm and Jaffe 1974, 1977, 
Fisher 1969, Frohlich et a1 1976, Sokal 1982), it follows that (1 a )  must fail for dimension 
d >4. The validity of ( l a )  and ( l b )  for the three-dimensional Ising model is still 
somewhat controversial (Zinn-Justin 1979, LCvy et a1 1982, Fisher and Chen 1985). 

The main numerical techniques used so far to study the critical exponent a have 
been the series extrapolation (Sykes et a1 1972a, b, Zinn-Justin 1979, LCvy et al 1982, 
Guttmann 1984, 1986b, Enting and Guttmann 1985, Fisher and Chen 1985) and the 
field theoretic renormalisation group (Le Guillou and Zinn-Justin 1980). Relatively 
little Monte Carlo work on a has been done; it is the purpose of this paper to begin 
to fill this gap. 

The model we shall consider is the self-avoiding walk (SAW) on the square lattice 
( d  = 2). In polymer physics SAW have been introduced as a model for polymer molecules 
with excluded volume (de Gennes 1979). In field theory they appear as the n L 0 limit 
of an O(n)-invariant U model (de Gennes 1972, des Cloizeaux 1975, Aragio de 
Carvalho et a1 1983). We consider the present study a warm-up for the physically 
more interesting (and potentially controversial) case of SAW in dimension d = 3. 

Criticality for this model means the limit of an infinite number of steps. If C N ( x )  
is the number of N-step SAW starting from the origin and ending at the site x, one 
expects an asymptotic behaviour of the type 

(4) 
where p is called the effective coordination number, which depends on the given 
lattice. Note that it is asing which appears in (4); for the SAW we always have 
a = max(aSing, 0). 

The radius of gyration of a walk is the square root of the mean-square distance 
from its barycentre of the sites along the walk. The mean radius of gyration S N ( x )  
for walks of N steps starting from the origin and ending at the site x is believed to 
scale as 

CN (x )  - p N N a s ~ n ~ - 2  

S N  (x) - N ” .  ( 5 )  
The exponents a and v are believed to depend only on the dimension d of the lattice. 
In formulae (4) and (5) N must have the same parity as x, otherwise C,(X) = 0. Notice 
that p and v can alternatively be obtained by considering N-step walks starting from 
the origin but ending anywhere, because their number and their mean radius of gyration 
are believed to scale as 

CN 

S N - N ”  

with y a new universal exponent. 
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Nienhuis (1982, 1984) has determined the exact critical exponents for the univer- 
sality class of the two-dimensional SAW, making use of renormalisation group ideas. 
He finds U =: and, assuming hyperscaling, using = f .  Direct numerical estimates of v 
and cysing are in agreement with these values. Derrida (1981) obtains 

p. = 2.638 17 * 0.000 21 

U = 0.7503 i 0.0002 
(7) 

based on a finite-size scaling (also called phenomenological renormalisation) computa- 
tion (but see Berretti and Sokal (1985) for a critique). Enting and Guttmann (1985) 
obtain 

p. = 2.638 16 * 0.000 10 
(8) 

using = 0.500 * 0.005 

based on an exact enumeration of self-avoiding rings on the square lattice up to 46 
steps (i.e. C,(x) for x a nearest neighbour of the origin up to N =45) .  Assuming 
aSing =: they obtain the more precise estimate 

p. = 2.638 155 * 0.000 025. (9) 

Unfortunately their method does not give any information on the mean radius of 
gyration. This quantity has been studied for rings only up to 28 steps (Privman and 
Rudnick 1985); the resulting estimate is 

v =0.750*0.0015. (10) 

Monte Carlo studies of SAW with free endpoint (Havlin and Ben-Avraham 1983, 
Rapaport 1985, Berretti and Sokal 1985, Madras and Sokal 1986) give values for p 
and v in agreement with the above estimates. 

In this paper we report the results of a simulation on SAW with fixed endpoints 
which have been chosen to be nearest neighbours (1x1 = 1 ) .  We use a Monte Carlo 
algorithm due to Berg and Foerster (1981), Araggo de Carvalho er a1 (1983) and 
Araglo de Carvalho and Caracciolo (1983) (hereafter referred to as BFACF).  This 
algorithm is of the chain-deformation type, and generates SAW in a modified grand 
canonical ensemble ( N is variable) with grand partition function 

Z ( P ) =  N ( o ) p " " '  
w:o-x 

where o is a SAW starting at the origin and ending at x, and N ( w )  is the number of 
steps in W .  The BFACF algorithm has recently been proven to be ergodic in the 
two-dimensional case (Madras 1986). In  dimension d = 3 the BFACF algorithm is not 
ergodic when IxI,=max(/x,l, IxJ, I x , ~ )  = 1, due to the possibility of knots (Sokal 1986). 
The ergodicity in d = 3 for lxloc 2 2, or in d 2 4, is an open question. 

The dynamical properties of the BFACF algorithm are rather subtle. Let A be an 
observable and r the Monte Carlo time, and let 

be its normalised time-autocorrelation function measured at equilibrium. For most 
Monte Carlo algorithms pAA( t )  decays exponentially (-exp(-t/.r)), but for the BFACF 
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algorithm T is infinite, i.e. the lowest excitation is massless (Sokal and Thomas 1986). 
Nevertheless, the integrated autocorrelation time 

appears to be finite, for reasonable observables A. It is this quantity which determines 
the statistical error bars in the Monte Carlo determination of ( A )  (Binder 1979, Berretti 
and Sokal 1985). We expect that T ~ ~ ~ , ~  scales as 

7 in t .A  - CA(N)PA* (14) 
It is found empirically (Caracciolo and Sokal 1986) that pA=3,  at least for the 
observables A = N, N 2 ,  N 3 ;  the constant C ,  does of course depend on A. Further 
information on the dynamical behaviour can be found in Caracciolo and Sokal (1986) 
and Sokal and Thomas (1986). 

We chose p = 0.376 and performed 1.4 x lo8 Monte Carlo iterations for thermalisa- 
tion; we then performed 3.5 x 10" iterations, taking data once every 1.4 x lo5 iterations. 
This took ~ 3 0 0  h of CPU time on an IBM 3033 computer. At this value of p, 

( N )  = 65.74* 1.64. (15 )  

~ ~ , , ~ , ~ = ( 1 . 8 7 * 0 . 1 4 ) ~  lo6 (16) 

The autocorrelation time is found to be 

(Caracciolo and Sokal 1986), indicating that the thermalisation interval was adequate. 
Following Berretti and Sokal (1985) (see also Caracciolo and Glaus 1985, Glaus 1985, 
Guttmann et a1 1986) we computed maximum-likelihood estimates of p and asing by 
assuming that for N a Nmin one has exactly 

C N ( x )  = ao(x)pNN"-g-*(l  + a , ( x ) / N ) z ( N  = x mod 2). (17) 
In tables 1 and 2 we show the estimators for p and asing as functions of Nmin and a , .  
Using the flatness criterion (Berretti and Sokal 1985, Guttmann et a1 1986), we find 

p = 2.6375 f 0.0005 f 0.0024 
(18)  

c~,i,,=0.520*0.046*0.150. 

Here the first error is the systematic error due to excluded corrections to scaling (95% 
subjective confidence limits) and the second error is the statistical error (95% confidence 
limits, evaluated at Nmin = 49). If we impose the best series-extrapolation estimate 
p = 2.638 156 (Guttmann 1986b) and perform a one-parameter maximum-likelihood 
analysis, we find (table 3)  

aSing = 0.465 f 0.030* 0.057. (19) 
The estimates (18) and (19) are consistent with the series-extrapolation predictions 
(though with much larger error bars) and with the presumed exact value aring=i.  

To estimate the critical exponent v, we assumed that for N 2 Nmin we have exactly 

log S , ( X )  = Y log( N + b , ( x ) )  + b,(x)  (20) 
and performed a least-squares fit. In figure 1 we plot the estimates for v as a function 
of Nmin for a range of values of b, . We find 

(21) v = 0.750 * 0.002 f 0.009 
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Table 1. Maximum-likelihood estimates for p as a function of Nmi, and a, (see (17)). 
The last entry in each column is the statistical error bar (95% confidence limit). 

N m i n  

01 9 19 29 39 49 59 69 79 

-2.00 
-1.75 
- 1.50 
- 1.25 
-1.00 
-0.75 
-0.50 
-0.25 

0.00 
0.25 
0.50 
0.75 
1 .oo 

2.6384 
2.6383 
2.6381 
2.6380 
2.6378 
2.6377 
2.6375 
2.6374 
2.6372 
2.6371 
2.6370 
2.6368 
2.6367 

0.0014 

2.6380 
2.6379 
2.6378 
2.6377 
2.6377 
2.6376 
2.6375 
2.6375 
2.6374 
2.6373 
2.6373 
2.6372 
2.6372 

0.0017 

2.6378 
2.6378 
2.6377 
2.6377 
2.6376 
2.6376 
2.6375 
2.6375 
2.6374 
2.6374 
2.6374 
2.6373 
2.6373 

0.0019 

2.6378 
2.6378 
2.6371 
2.6377 
2.6377 
2.6376 
2.6376 
2.6376 
2.6375 
2.6375 
2.6375 
2.6374 
2.6374 

0.0022 

2.6376 
2.6376 
2.6376 
2.6376 
2.6375 
2.6375 
2.6375 
2.6375 
2.6374 
2.6374 
2.6374 
2.6374 
2.6374 

0.0024 

2.6375 
2.6375 
2.6375 
2.6374 
2.6374 
2.6374 
2.6374 
2.6374 
2.6373 
2.6373 
2.6373 
2.6373 
2.6373 

0.0030 

2.6374 
2.6374 
2.6374 
2.6373 
2.6373 
2.6373 
2.6373 
2.6373 
2.6373 
2.6372 
2.6372 
2.6372 
2.6372 

0.0034 

2.6373 
2.6373 
2.6372 
2.6372 
2.6372 
2.6372 
2.6372 
2.6372 
2.6371 
2.6371 
2.6371 
2.637 1 
2.6371 

0.0038 

Table 2. Maximum-likelihood estimates for arlnp as a function of N,,, and a, (see (17)). 
The last entry in each column is the statistical error bar (950/, confidence limit). 

h ” , n  

-2.00 
- 1.75 
-1.50 
- 1.25 
-1.00 
-0.75 
-0.50 
-0.25 

0.00 
0.25 
0.50 
0.75 
1 .00 

~ 

9 19 29 39 49 59 69 79 

0.448 0.475 0.487 0.487 0.498 0.512 0.521 0.535 
0.461 0.483 0.492 0.491 0.502 0.515 0.524 0.537 
0.473 0.490 0.497 0.495 0.506 0.518 0.527 0.540 
0.485 0.497 0.502 0.500 0.509 0.521 0.530 0.543 
0.497 0.503 0.507 0.504 0.513 0.524 0.533 0.545 
0.508 0.510 0.513 0.508 0.517 0.528 0.536 0.548 
0.519 0.517 0.518 0.512 0.520 0.531 0.539 0.550 
0.530 0.524 0.523 0.516 0.524 0.534 0.542 0.553 
0.540 0.530 0.528 0.521 0.527 0.537 0.545 0.556 
0.551 0.536 0.533 0.525 0.531 0.540 0.547 0.558 
0.561 0.543 0.537 0.529 0.534 0.543 0.550 0.561 
0.571 0.549 0.542 0.533 0.538 0.546 0.553 0.563 
0.580 0.555 0.547 0.537 0.541 0.550 0.556 0.566 

0.047 0.072 0.098 0.123 0.150 0.207 0.255 0.316 
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Table 3. Maximum-likelihood estimates for (rring as a function of Nmi, and a ,  (see (17)), 
with fi  = 2.638 156 imposed. The last entry in each column is the statistical error bar (95% 
confidence limit). 

a1 9 19 29 39 49 59 69 79 89 99 

-3.50 
-3.25 
-3.00 
-2.75 
-2.50 
-2.25 
-2.00 
-1.75 
-1.50 
-1.25 
-1.00 
-0.75 
-0.50 

0.407 
0.416 
0.424 
0.433 
0.441 
0.449 
0.457 
0.464 
0.472 
0.479 
0.486 
0.493 
0.500 

0.025 

0.441 
0.446 
0.450 
0.455 
0.459 
0.463 
0.468 
0.472 
0.476 
0.480 
0.484 
0.488 
0.492 

0.033 

0.450 0.452 0.455 
0.454 0.454 0.457 
0.457 0.457 0.459 
0.460 0.460 0.461 
0.463 0.462 0.464 
0.467 0.465 0.466 
0.470 0.467 0.468 
0.473 0.470 0.470 
0.476 0.472 0.472 
0.479 0.475 0.474 
0.482 0.477 0.477 
0.485 0.480 0.479 
0.488 0.482 0.481 

0.042 0.050 0.057 

0.457 
0.459 
0.461 
0.463 
0.465 
0.467 
0.468 
0.470 
0.472 
0.474 
0.476 
0.478 
0.480 

0.067 

0.457 
0.459 
0.460 
0.462 
0.464 
0.466 
0.467 
0.469 
0.471 
0.472 
0.474 
0.476 
0.477 

0.076 

0.457 
0.459 
0.460 
0.462 
0.463 
0.465 
0.466 
0.468 
0.469 
0.471 
0.473 
0.474 
0.476 

0.086 

0.458 
0.460 
0.461 
0.462 
0.464 
0.465 
0.467 
0.468 
0.470 
0.471 
0.472 
0.474 
0.475 

0.097 

0.459 
0.460 
0.461 
0.463 
0.464 
0.465 
0.467 
0.468 
0.469 
0.470 
0.472 
0.473 
0.474 

0.109 

0 756  

0.754 

0 7 5 2  

0.7 5 0 

1 0 . 7 4 8  

I 

I 
I 

0 0  O 
0 0  0 

t t t +  t + 
t 

0 7 4 6  1, 
0 0.01 0.02 0.03 0.04 0.05 

1 I N m i n  

Figure 1. Least-squares estimates for v as a function of N,, ,  and b,  (see (20)). Error 
bars are statistical errors only (95'10 confidence limits). x,  b = 0; +, b = 0.25; 0, b = 0.5; 
cl, b = 0.75; *, b = 1.0. 

(statistical error bar evaluated at Nmin = 49), in good agreement with the presumed 
exact value Y =$ 

Our data are entirely consistent with the hyperscaling relation ( l a )  and ( l b ) .  It is 
to be emphasised, however, that our error bars on ,U and aSing are very large, and our 
walks are rather short, compared to a similar study of SAW withfree endpoints (Berretti 
and Sokal 1985). This difference can be attributed to the larger dynamic critical 
exponent of the BFACF algorithm ( T ~ ~ ~ , ~  - ( N)'3)  as compared to the Berretti-Sokal 
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algorithm (7- ( N ) * ) .  Perhaps the simulation of walks with fixed endpoints is intrinsi- 
cally more difficult than for free endpoints, or perhaps new algorithms better than the 
BFACF algorithm can be devised. The question is an important one, and upon it may 
depend the feasibility of a high-precision Monte Carlo test of the hyperscaling relation 
(1) for the three-dimensional SAW. 

Acknowledgment 

The research of one of the authors (ADS) was supported in part by NSF grant 
DMS-8400955. 

References 

Aizenman M 1982 Commun. Math. Phys. 86 1 
Aizenman M and Fernandez R 1986 1. Stat. Phys. 44 395 
Aizenman M and Graham R 1983 Nucl. Phys. B 225 [FS9] 261 
Aragio de Carvalho C and Caracciolo S 1983 J. Physique 44 323 
Araglo de Carvalho C, Caracciolo S and Frohlich J 1983 Nucl. Phys. B 215 [FS7] 209 
Baker G A Jr 1977 Phys. Rev. B 15 1552 
Berg B and Foerster D 1981 Phys. Letr. 106B 323 
Berretti A and Sokal A D 1985 J. Stat. Phys. 40 483 
Binder K 1979 Monte Carlo Methods in Statistical Physics ed K Binder (Berlin: Springer) 
Caracciolo S and Glaus U 1985 J. Star. Phys. 41 41 
Caracciolo S and Sokal A D 1986 1. Phys. A: Math. Gen. 19 L797 
d e  Gennes P G 1972 Phys. Lett. 38A 339 
- 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press) 
Derrida B 1981 J.  Phys. A: Mafh .  Gen. 14 L5 
des Cloizeaux J 1975 J. Physique 36 281 
Enting I G and Guttmann A J 1985 J. Phys. A: Math. Gen. 18 1007 
Fernandez R, Frohlich J and Sokal A D 1986 in preparation 
Fisher M E 1967 Rep. Prog. Phys. 30 615 
- 1969 Phys. Rev. 180 594 
- 1973 Renormalization Group Methods in Staristical Physics and Quantum Field Theory ed M S Green 

- 1983 Critical Phenomena (Lecture Notes in Physics 186) ed F J W Hahne (Berlin: Springer) 
Fisher M E and Chen J-H 1985 J. Physique 46 1645 
Frohlich J 1982 Nucl. Phys. B 200 [FS4] 281 
Frohlich J, Simon B and Spencer T 1976 Commun. Marh. Phys. 50 79 
Frohlich J and Sokal A D 1986 in preparation 
Glimm J and Jaffe A 1974 Phys. Rev. D 10 536 
- 1977 Commun. Math. Phys. 52 203 
Glaus U 1985 J. Phls. A: Math. Gen. 18 L789 
Guttmann A J 1984 J. Phys. A: Marh. Gen. 17 455 
- 1986a Phys. Rev. B 33 5089 
- 1986b in preparation 
Guttmann A J ,  Osborn T R and Sokal A D 1986 J. Phys. A: Math. Gen. 19 2591 
Hall C K 1975 J. Star. Phys. 13 157 
Hara T, Hattori T and Tasaki H 1985 1. Math. Phys. 26 2922 
Hattori T 1983 J .  Math. Phys. 24 2200 
Havlin S and Ben-Avraham D 1983 Phys. Rev. A 27 2759 
Josephson B D 1967a Proc. Phys. Soc. 92 269 
- 1967b Proc. Phys. Soc. 92 276 

and J P Gunton (Philadelphia, PA: Temple University Press) 



2576 S Caracciolo and A D Sokal 

Kadanoff L P 1966 Physics 2 263 
Knops H J F, van Leeuwen J M J and Hemmer P C 1977 J. Stat. Phys. 17 197 
Le Guillou J C and Zinn-Justin J 1980 Phys. Reo. B 21 3976 
LCvy M, Le Guillou J C and Zinn-Justin J (ed) 1982 Phase Transitions ( C a r g k e  1980) (New York: Plenum) 
Madras N 1986 in preparation 
Madras N and Sokal A D 1986 in preparation 
Nienhuis B 1982 Phys. Rev. Lett. 49 1062 
- 1984 J. Stat. Phys. 34 731 
Privman V and Rudnick J 1985 1. Phys. A :  Math. Gen. 18 L789 
Rapaport D C 1985 J. Phys. A :  Math. Gen. 18 L39 
Sokal A D 1979 Phys. Lett. 71A 451 
- 1981 J. Stat. Phys. 25 51 
- 1982 Ann. Inst. H PoincarP A 31 317 
- 1986 Comparative Analysis of Monre Carlo Methods for the Self-Aooiding Walk, preprint 
Sokal A D and Thomas L E 1986 in preparation 
Stell G 1972 Phys. Reo. B 6 4207 
Sykes M F, Hunter D L, McKenzie D S and Heap B R 1972a 1. Phys. A :  Gen. Phys. 5 667 
Sykes M F, McKenzie D S, Watts M G and Martin J L 1972b J. Phys. A :  Gen. Phys. 5 661 
Zinn-Justin J 1979 1. Physique 40 969 


